Correlated template-switching events during minus-strand DNA synthesis: a mechanism for high negative interference during retroviral recombination.
نویسندگان
چکیده
Two models for the mechanism of retroviral recombination have been proposed: forced copy choice (minus-strand recombination) and strand displacement-assimilation (plus-strand recombination). Each minus-strand recombination event results in one template switch, whereas each plus-strand recombination event results in two template switches. Recombinant proviruses with one and more than one template switches were previously observed. Recombinants with one template switch were generated by minus-strand recombination, while recombinants containing more than one template switch may have been generated by plus-strand recombination or by correlated minus-strand recombination. We recently observed that retroviral recombination exhibits high negative interference whereby the frequency of recombinants containing multiple template-switching events is higher than expected. To delineate the mechanism that generates recombinants with more than one template switch, we devised a system that permits only minus-strand recombination. Two highly homologous vectors, WH204 and WH221, containing eight different restriction site markers were used. The primer binding site (PBS) of WH221 was deleted; although reverse transcription cannot initiate from WH221 RNA, it can serve as a template for DNA synthesis in heterozygotic virions. After one round of retroviral replication, the structures of the recombinant proviruses were examined. Recombinants containing two, three, four, and five template switches were observed at 1.4-, 10-, 65-, and 50-fold-higher frequencies, respectively, than expected. This indicates that minus-strand recombination events are correlated and can generate proviruses with multiple template switches efficiently. The frequencies of recombinants containing multiple template switches were similar to those observed in the previous system, which allowed both minus- and plus-strand recombination. Thus, the previously reported high negative interference during retroviral recombination can be caused by correlated template switches during minus-strand DNA synthesis. In addition, all examined recombinants contained an intact PBS, indicating that most of the plus-strand DNA transfer occurs after completion of the strong-stop DNA.
منابع مشابه
Extended minus-strand DNA as template for R-U5-mediated second-strand transfer in recombinational rescue of primer binding site-modified retroviral vectors.
We have previously demonstrated recombinational rescue of primer binding site (PBS)-impaired Akv murine leukemia virus-based vectors involving initial priming on endogenous viral sequences and template switching during cDNA synthesis to obtain PBS complementarity in second-strand transfer of reverse transcription (Mikkelsen et al., J. Virol. 70:1439-1447, 1996). By use of the same forced recomb...
متن کاملHomologous recombination occurs in a distinct retroviral subpopulation and exhibits high negative interference.
Homologous recombination and deletions occur during retroviral replication when reverse transcriptase switches templates. While recombination occurs solely by intermolecular template switching (between copackaged RNAs), deletions can occur by an intermolecular or an intramolecular template switch (within the same RNA). To directly compare the rates of intramolecular and intermolecular template ...
متن کاملPausing during reverse transcription increases the rate of retroviral recombination.
Retroviruses package two copies of genomic RNA into viral particles. During the minus-sense DNA synthesis step of reverse transcription, the nascent DNA can transfer multiple times between the two copies of the genome, resulting in recombination. The mechanism for this process is similar to the process of obligate strand transfers mediated by the repeat and primer binding site sequences. The lo...
متن کاملModification for the Mechanism of Retroviral Recombination
Figure 1: The original minus strand exchange model. (A) The retroviral virion contains two essentially identical RNA molecules. (B) An extended singlestranded DNA molecule is left tailing behind. This single-stranded DNA tail is free to form a hybrid duplex with another RNA molecule. (C) The original template will be displaced by branch migration of the second RNA. This second RNA molecule will...
متن کاملEffect of the murine leukemia virus extended packaging signal on the rates and locations of retroviral recombination.
Reverse transcriptase (RT) switches templates frequently during DNA synthesis; the acceptor template can be the same RNA (intramolecular) or the copackaged RNA (intermolecular). Previous results indicated that intramolecular template switching occurred far more frequently than intermolecular template switching. We hypothesized that intermolecular template-switching events (recombination) occurr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 72 2 شماره
صفحات -
تاریخ انتشار 1998